АДВАРО́ТНЫЯ ТРЫГАНАМЕТРЫ́ЧНЫЯ ФУ́НКЦЫІ,

кругавыя функцыі, функцыі, якія вызначаюць дугу (лік) па дадзеным значэнні яе трыганаметрычных функцый, што разглядаюцца на пэўных прамежках манатоннасці.

Адрозніваюць Arcsinx («арксінус x») — мноства функцый, адваротных да sinx; Arccosx («арккосінус x») — да cosx; Arctgx («арктангенс х») — да tgx; Arcctgx (арккатангенс x») — да ctgx; Arcsecx («арксеканс x») да secx; Arccosecx («арккасеканс x») — да cosecx. Функцыі Arcsinx і Arccosx вызначаны пры |x|1, Arctgx і Arcctgx — для ўсіх сапраўдных x, Arcsecx і Arccosecx|x|1 (2 апошнія выкарыстоўваюцца рэдка). У выніку перыядычнасці трыганаметрычных функцый для кожнай з іх існуе бесканечнае мноства адваротных функцый, гал. значэнні якіх вызначаюцца ўмовамі: -π/2 ≤ arcsin x ≤ π/2; 0 ≤ arccos x ≤ π; -π/2 ≤ arctg x ≤ π/2; 0 ≤ arsec x ≤ π; 0 ≤ arcctg x ≤ π; -π/2 ≤ arccosec x ≤ π/2. Суадносіны паміж трыганаметрычнымі функцыямі можна замяніць суадносінамі паміж адваротнымі трыганаметрычнымі функцыямі, напр., з роўнасці tgx = sinx 1 sin2x вынікае, што arcsinx = arctg x 1 x2 .

т. 1, с. 99

Беларуская Энцыклапедыя (1996—2004, правапіс да 2008 г., часткова)